行业发展如何脱虚入实?人才与核心技术瓶颈如何突破?法律责任如何界定?如何应对人类就业机会挑战?算法歧视如何破解?
前言
2017年,人工智能全面爆发,资本大量涌入,政策不断加持,各企业趋之若鹜。在此时刻,中国完全掌握着弯道超车的良机,只是,我们更需要理性认知,毕竟健康发展、蹄疾步稳的人工智能发展才会对未来有益。
风口已来,静待腾飞……
在不久前结束的2018年全国研究生招生统一考试中,“人工智能对人类社会产生哪些影响,对经济发展带来哪些改变”成为管理类联考综合能力考试中一道分值很重的作文题目。这从一个侧面可以看出,2017年成为国家战略的人工智能之火热程度。
在浙江乌镇落幕的第四届世界互联网大会上,人工智能同样是最热门的话题,在以人工智能为主题的分论坛会场,已经到了人满为患、不得不限制进场人数的地步。
回顾2017年的科技创新,坦率地说并没有给人太多惊喜,最引人关注的,莫过于人工智能。这一年,人工智能全面爆发,成为国家战略。
2017年7月,国务院印发的《新一代人工智能发展规划》中,明确新一代人工智能发展分三步走的战略目标,到2030年使中国人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。这是中国首个面向2030年的人工智能发展规划。随着人工智能上升为国家战略,顶层设计框架搭建完成,产业发展有望持续提速,带来投资新机遇。
实际上,在政策出台前,对市场异常敏感的企业层面已经开始布局,2017年只是进入到了发轫期。
也许,不少“吃瓜群众”此刻方才明白,为何做搜索引擎的百度提出“allin”(全面进入)人工智能战略,阿里巴巴也提出了数据是生产资料的概念,而腾讯早已经开始“连接”一切。
“作为一项改变世界的技术,人工智能已经到了从实验室走入真实的生产环境和日常生活的‘临界点’。”阿里巴巴集团副总裁刘松说。
在政策信号如此明确的背景下,人工智能几乎到了“人人争说”的地步。如今的中国,人工智能缺的不是关注和热度,而是理性的思考,是对未来风向的把握。
人工智能发展如何脱虚入实?人才与核心技术瓶颈如何取得突破?法律伦理责任如何界定?将会砸了谁的饭碗?背后的算法歧视如何解决?梳理过去一年人工智能发展,理性看待目前的阶段,这五大关键之问可能将是人工智能发展的风向标。
与实体经济结合去泡沫化
到了2017年年尾,曾经让各界争得面红耳赤的实体经济和虚拟经济之辩似乎已经没有太多意义。因为“取代谁”在当下已经成为非常不明智的设问。答案已经越来越明晰:实体经济是根本,虚拟经济也需要结合实体。换句话说也许更清楚,脱离实体的人工智能发展很难不出现泡沫。
于是在2017年,我们看到,很多的互联网工程师开始进入工厂深度研究流水线,拜师高级技工,在工厂写代码,而结合了人工智能的生产线大大提高了生产率。
阿里云总裁胡晓明认为,人工智能的发展要去泡沫化,下一站将是“产业AI”。目前,该公司在城市、工业、零售、金融、汽车、家庭等多个场景推出ET大脑等“产业AI”方案,这些能力、产品和解决方案都通过虚拟的云端结合了扎实的工业流水线。
胡晓明告诉记者:“现在人工智能领域有种浮躁的氛围,有些企业靠AI讲资本故事、炒作股价。人工智能不应仅仅是实验室里的、PPT里的‘概念上的AI’,更应是‘产业AI’。”
人工智能若要健康发展,首先必须要有场景驱动,人工智能在解决什么问题、为这个社会的成本降低了多少、效率提高了多少;人工智能背后,是否有足够的数据来驱动AI能力的提升;是否有足够的计算能力支撑算法和深度学习?只有在这三个场景同时具备的前提下,人工智能才会有价值。
在2017年,工业大脑走进车间,突破了良品率提升、故障率预测等制造业核心难题,互联网与工业的结合帮助类似协鑫光伏、中策橡胶、天合光能、盾安新能源等大型制造企业创造利润数十亿元。在天合光能,工业大脑帮助其提升了电池片A品率达7%,而之前预设的目标是1%。
机器观察世界,机器学习规律,数据的积累、计算能力的提升,让人工智能由此变得真正聪明可用。
猎豹移动CEO傅盛认为,传统行业的智能化核心是把传统行业数据化,今天人工智能有机会把传统的物理世界数据化。物理世界的数据化是传统行业真正转型的核心。如果实体经济想实现10倍数增长,关键是要实现物理世界的数据化,用更多人工智能的方式,去获取更多来自于这个产业的数据。
2017年,时髦的城市大脑、工业大脑、无人驾驶、无人超市、无人机、语音识别、唇语识别,无一不是人工智能与实体结合的应用。
进入商店的每一张人脸,其实就是每一个访客的访问,在里面顾客拿起的每个动作都可以被识别。进入无人超市看上去是一个人脸识别签到,其实就是一个数据的来回流动。线上和线下没有界限,电商开始进军零售店,融合的前提就是数据化。
傅盛说自己的公司在美国硅谷只干了一件事,就是投了一个小基金,让它每次带自己去看硅谷的创业公司,从中可以知道美国企业在干什么。后来傅盛发现在数字化这一点上,美国公司在做的事情就是把物理世界数据化。
将物理世界数据化,与实体经济结合,降低社会成本,而不是空炒概念,数字对数字,将是人工智能未来健康发展的重要一环。
人才还得自己来培养
得人工智能者得天下,得人才者得人工智能。
人工智能火热自不待言,但是必须清醒认识到,在人才储备和核心技术方面我们尚存突破空间。
打开某知名招聘网站,搜索“人工智能”后马上会出现很多招聘岗位,具有诱惑力的薪酬让人眼前一亮。以人工智能算法工程师为例,该职位少则月薪一两万元,多则年薪百万元。
这种供需不平衡的现象,不仅在中国有,在美国硅谷亦是如此。
早在2016年,创新工场创始人李开复曾公开透露:“在硅谷,做深度学习的人工智能博士生,现在一毕业就能拿到年薪200万到300万美元的录用通知。”
据领英近日发布的《全球AI领域人才报告》显示,截至2017年一季度,基于领英平台的全球AI(人工智能)领域技术人才数量超过190万,其中美国相关人才总数超过85万,高居榜首,而中国的相关人才总数也超过5万人,位居全球第七。
然而,这些人才仍不能满足互联网行业的需求。不少互联网企业人士告诉记者,目前互联网行业中最稀缺的就是人工智能人才,甚至很多行业巨头会用月薪几十万元招聘人工智能顶级人才。
傅盛表示:“下大力气把海外人才引入中国是合理的,但核心人才还是要中国自己来培养。”
目前,业界对AI人才的争抢近乎白热化,但是“缺口”同样明显。来自第三方数据显示,过去一年中,人工智能人才需求量增长近2倍,2017年第三季度,人工智能人才需求量相较2016年同期增长高达179%。中兴研究院副院长董振江坦言:“去年招人非常困难,在人工智能领域,大家都在抢人,薪酬也一再加码。”
AI技术人才是主导这一变革的中流砥柱。人工智能的竞争说到底是对人才的竞争,在国内人才竞争中,数字挖掘、算法分析、语言识别、自然语言处理是人才竞争的核心。
而在核心技术方面,虽然我国已经取得了多项创新,但主要偏向应用和数据积累,在核心技术方面与美国尚存差距。我国虽然已从跟跑走向领跑,并有了弯道超车的机会,但美国仍是目前出台人工智能战略最多、核心技术和人才最多的国家。
如何在人才和核心技术方面取得突破,将是未来我国在人工智能发展中最需要注意的问题。
意味着更多从业机会
当机器越来越像人,能够做人的工作时,这是否意味着它们会抢走人类的饭碗?
来自互联网业界的声音相对乐观,一个普遍的观点是:人工智能对就业的冲击正在发生,但被取代的主要是重复性的工作。实际上,人工智能也会带来新的职位,让人类可以从事更多创造性的工作。
阿里巴巴集团副总裁刘松对记者说,人工智能将是人类历史上的第四次工业革命,其实每次新的工业革命到来的时候,都有类似“砸饭碗”的恐慌,事实证明,创新带来的更多的是机会。
他认为,未来人工智能意味着更多从业机会。确实会有很多职业被人工智能取代,但人类可以空出来更多时间做创造性的东西,或是享受创造性的内容。这将为设计师、艺术从业者带来更多可能性。
“什么人才最缺,可能是艺术类的创造者,而大量简单重复类工作会遇到冲击。”刘松表示。
数据似乎同样在支撑这样的说法。来自智联招聘的一份研究报告显示,程式化、重复性、依靠反复操作实现的熟练工种已经开始受到冲击,投资银行业务、校对录入这两个典型职位在过去三个季度连续出现大幅同比负增长。咨询公司德勤发布的报告也显示,人工智能已经在英国取代了80万个低技能工作岗位,但同时也创造出350万个新就业机会,后者的年收入比前者多1.3万英镑。
人工智能的研发者认为,机器永远不可能取代人的作用,人工智能只能解放人类,让人类从事更多的创造性和服务性工作。机械化程度越高的工作,人们越希望由人工智能完成,而需要创作的工作,则需要人类来完成。
问题的关键在于,这些“新饭碗”谁来端?
懂得学习、勇于迎接挑战的人,将是未来端“新饭碗”的人。具体而言,艺术创造者、心理医生等精神层面的从业者,未来将越来越受欢迎,而高危和恶劣环境的稳定岗位将大量被人工智能取代。
相关法规需要不断突破
伴随人工智能的应用不断落地,法律责任的划分和承担是人工智能发展面临的首要法律挑战。其涉及如何确保人工智能和自主系统是可以被问责的。
百度创始人李彦宏第一次正式介绍百度无人车时就遇到了这一问题——他驾驶无人车到会场后不久,就收到了交管部门的罚单。而最近百度无人车在河北雄安进行试驾,当地相关部门特别出台了临时交通规则让其上路,这就是法规上的突破。
由此说明,伴随着人工智能的进步,法规也需要不断取得突破。“无人车收到罚单了,距离大规模上路还会远吗?”李彦宏如此认识这个问题,而在世界各国,关于无人驾驶的立法也正在不断取得突破。
然而,当此人工智能的发轫期,有一个绕不过去的法律问题就是数据隐私保护。
人工智能的发展越来越依赖大量的数据分析,大规模的数据收集、分析和使用,使传统社会走向透明化,在万物互联、大数据和机器智能三者叠加后,人们或许不再有隐私可言。
如今,商家越来越夸大大数据、人工智能给人类的生产、生活带来的极大便利,而用户本身也往往忽视了这些新技术新应用对隐私和个人数据带来的危害。
人工智能能带来精准营销,而精准营销的背后可能就是“精准诈骗”。因此,在发展人工智能的过程中,个人隐私和数据保护是国际社会长期以来重点关注的内容。近年来,随着大数据、云计算以及人工智能新技术的快速发展和应用,给现有个人信息保护法律制度带来了新的挑战,各国立法、修订法律活动更加频繁。
人工智能时代要负起责任
今日头条是过去一年各界争相关注的一个信息发布平台,基于一种设计后的算法,今日头条作为信息集合平台为用户推荐最感兴趣的内容。由于对用户注意力的精准抓取,今日头条取得了巨大成功,其身价不断增高。
今日头条的成功之处,在于其所谓基于算法的精准推送,但问题的关键还在于,这种算法已经越来越成为一种“看不见的正义”。这种算法是不是用户真正所需要的?对此,一些用户抱怨,往往因误点了一两条新闻,或者仅仅出于好奇点了一下相关新闻,就导致之后不断大量地被推送相关内容的新闻。这实际上也变相剥夺了用户的选择权。
必须明确的是,就目前发展阶段而言,认为算法可以为人类社会中的各种事务和决策工作带来完全的客观性只是一厢情愿。无论如何,算法的设计都是编程人员的主观选择和判断,他们是否可以不偏不倚地将既有法律和道德原封不动地写入程序,值得深究。
算法歧视由此成为一个值得重视的问题。
今日头条的出现说明这样一个问题,算法开始越来越多地左右着移动互联网,比如可以决定你看到什么新闻,听到什么歌曲,看到哪个好友的动态。那么,算法可以做到公平正义吗?
互联网上的算法歧视早已有之,图像识别系统就曾犯过种族主义大错,比如,谷歌公司的图片软件曾错将黑人的照片标记为“大猩猩”。
英国《卫报》曾发表评论指出,人工智能可能已经开始出现了种族和性别偏见,但这种偏见并非来自机器本身,而是计算机在学习人类语言时吸收了人类文化中根深蒂固的观念,从而出现了种族和性别偏见。这些发现令人担忧现有的社会不平等和偏见正在以不可预知的方式得到强化。
解铃还需系铃人,规避“算法歧视”的工作必须由人去做。比如,有些大型IT公司已经成立了道德委员会,这标志着负责任的人工智能时代的到来;有些组织则致力于解决与人工智能相关的安全和隐私问题,并推动开源,从而为全社会共享。
我们不仅应建构必要的伦理道德规范体系,还应增强智能算法的透明性。正如丹妮拉·济慈·西特伦在其论文《技术正当程序》中所指出的,“鉴于智能算法日益决定着各种决策的结果,人们需要建构技术公平规范体系,通过程序设计来保障公平的实现,并借助于技术程序的正当性来强化智能决策系统的透明性、可审查性和可解释性”