目前,人工智能(AI)在图像和语音识别等领域表现出色,但科学家认为这还远远不够。据美国《麻省理工技术评论》杂志网站近日报道,对于AI的发展来说,理解视频中的动态行为是接下来的关键发展方向,这对于AI用其软件理解世界至关重要,也有助于AI在医疗、娱乐和教育等领域的广泛应用。
理解图像还要理解动作行为
解释视频的AI系统,包括自动驾驶汽车中的系统,常常依赖于识别静态框架中的对象,而非对行为进行解释。谷歌最近发布了一种能识别视频中对象的工具,并纳为云平台的一部分,该平台包含用于处理图像、音频和文本的AI工具。
但对AI来说,能理解猫为何会骑着Room?ba扫地机器人在厨房与鸭子追逐嬉戏,才是彰显其能力之处。
因此,科学家面临的下一个挑战可能是教会机器不仅理解视频包含了什么内容,还要理解镜头中发生了什么。这可能带来一些实际的好处,比如带来强大的搜索、注释和挖掘视频片段的新方法,也可以让机器人或自动驾驶汽车更好地理解周围的世界如何运转。
各出奇招用视频训练计算机
目前,科学家使用一些视频数据集来训练机器,以使其更好地理解真实世界中的行为,麻省理工学院(MIT)和IBM目前正携手进行相关研究。
2016年9月,IBM与MIT宣布组建“IBM—MIT脑启发多媒体机器理解实验室”,双方将合作开发具有高级视听能力的AI。
前不久,MIT和IBM发布了一个庞大的视频剪辑数据集,这个名为“时间数据集时刻”的视频数据集囊括了从钓鱼到霹雳舞在内的许多动作的3秒钟片段。该项目负责人、MIT首席研究科学家奥德·奥利瓦说,世界上许多事情瞬息万变。如果你想明白为什么有些事情会发生,运动会给你提供很多信息。
之所以把视频长度定成3秒,是因为大部分时候,人类需要3秒时间,去观察并理解一个动作意图,比如,风吹树动,或者一个物体从桌上掉落下来等。
无独有偶,谷歌去年也发布了一套由800万个做了标记的YouTube视频组成的视频集YouTube-8M;脸谱正在开发名为“场景”“操作”和“对象”集的注释数据集。
普林斯顿大学助理教授奥尔加·鲁萨克维斯基专门从事计算机视觉工作。他表示,此前科学家认为,很难开发出有用的视频数据集,因为它们需要比静止图像更多的存储和计算能力。他说:“我很高兴能使用这些新的数据集,3秒的时长很棒——它提供了时间上下文,同时对存储和计算的要求也比较低。”
还有其他机构在研究更具创造性的方法。位于多伦多和柏林的创业公司“二十亿神经元”创造了一个定制数据集。该公司联合创始人罗兰梅·尼塞维奇称,他们还使用了专门处理时间视觉信息的神经网络,“用其他数据集训练的AI可以告诉你,视频中显示的是足球比赛还是派对;用我们的定制数据集训练的神经网络可以告诉你,是否有人刚刚进入房间。”
转移学习人工智能的未来
按照IBM的解释,人类能够观看一段简短的视频并轻松地描绘出视频内容,甚至能预测后续事件的发生,而这样的能力对机器来说依然是可望而不可及的。因此,IBM和MIT要做的就是,解决机器在认知和预测上的技术难题,在这一基础上开发出一套认知系统。
IBM的丹尼·古特弗罗因德说,有效识别行为要求机器学习某个行动,并将获得的知识应用于正在进行同样行动的情境中,这一领域的进步,即转移学习,对于AI的未来非常重要;而且,这项技术在实际中大有用途,“你可以用它来帮助改善对老年人和残疾人的护理,比如告诉护理人员是否有老人跌倒,或者他们是否已经吃过药等等。”
MIT和IBM也表示,一旦机器能够看懂视频,具备视觉能力的高级计算机认知系统将能用于各种行业,不仅仅是医疗,还有教育、娱乐等领域,包括对复杂的机器进行保养和维修等。