AI challenger发起中国首次零样本学习算法大赛

AI challenger发起中国首次零样本学习算法大赛-DVBCN
去年,由创新工场、搜狗、头条联合主办的AI Challenger(以下简称AIC)全球AI挑战赛吸引了来自65个国家近万团队参赛。今年,AIC预热赛零样本学习(zero-shot learning)竞赛即日起开始比赛。
 
据了解,零样本学习竞赛同样发布大规模图像属性数据集,包含78017张图片、230个类别、359种属性。与目前主流的用于zero-shot learning的数据集相比,图片量更大、属性更丰富、类别与ImageNet重合度更低。
 
创新工场AI工程院运营副总裁吴卓浩表示,因为在很多情况下人们难以获得足够的有标注的数据来训练识别或预测模型。受人类学习能力的启发,零样本学习(zero-shot learning)希望借助辅助知识(如属性、词向量、文本描述等),在没有任何训练样本的情况下学会从未见过的新概念。这具有重要的研究意义和广泛的应用场景,被认为是实现大规模物体识别的一个重要方式。瞄准这个国际前沿课题,AI Challenger带来了目前世界最大的零样本学习数据集、以及国内首次零样本学习竞赛。
 
资料显示,零样本学习是当前最具挑战的AI识别方法之一。简单来说就是识别从未见过的数据类别,即训练的分类器不仅仅能够识别出训练集中已有的数据类别,还可以对于来自未见过的类别的数据进行区分。这是一个很有用的功能,使得计算机能够具有知识迁移的能力,并无需任何训练数据,很符合现实生活中海量类别的存在形式。
 
传统的“零样本学习”方法首先是让智能体(Agent)对类别进行语义理解。将类别标签利用辅助知识(如属性)嵌入到语义空间中,再利用训练集中的数据学习这种从图像到语义的映射关系。此后,即使遇到新的类别,只要提供了该类别的语义知识,模型即可识别该类别,这就是零样本学习。
 
例如识别一张斑马的图片,但在训练时没有训练过斑马的图片。那么我们可以通过比较这张斑马图片中包含的属性和各个类别的属性定义,进而在属性空间中找到与该测试图片相近标签,即为该图片的标签。
 
而零样本学习的意义也显而易见:在传统图像识别任务中,训练阶段和测试阶段的类别是相同的,但每次为了识别新类别的样本需要在训练集中加入这种类别的数据。一些类别的样本收集代价大,即使收集到足够的训练样本,也需要对整个模型进行重新训练。这都会加大识别系统的成本,零样本学习方法便能很好的解决这个问题。
相关文章
Canalys:预计今年5G智能手机出货占比将达65%,AI手机渗透率达17%
Canalys:预计今年5G智能手机出货占比将…
阿里巴巴9月份季度业绩:优酷运营亏损逐步减少,云智能集团收入为296.10亿元
阿里巴巴9月份季度业绩:优酷运营亏损逐…
权威报告:大模型深度赋能传媒行业,媒体融合也走向智慧融媒
权威报告:大模型深度赋能传媒行业,媒…
【前沿】专家学者话6G:从刚需、标准、试验等视角看6G网络
【前沿】专家学者话6G:从刚需、标准、…
中国移动董事长杨杰:5G-A商用城市超330个,发射全球首颗6G架构验证星
中国移动董事长杨杰:5G-A商用城市超330…
华为徐直军:智能化必将是一个长期过程,而算力是智能化的关键基础
华为徐直军:智能化必将是一个长期过程…
我还没有学会写个人说明!