当我昨天看到OpenAI的人工智能,在一项奖金2400万美元的电子竞技赛事上,击败DotA2人类顶级高手时,整个人感觉超兴奋。
这是因为,一方面我是一个电子竞技的粉丝。尽管没玩过DotA 2,但我经常在Twitch上观看其他其他电竞赛事,高中时我还当过一阵半职业选手。
更重要是的,像DotA这类多人在线战术竞技游戏(MOBA),以及星际2这类实时策略游戏(RTS),通常被认为远超目前人工智能的驾驭能力。因为这两类游戏需要长期战略决策、多人合作,比国际象棋、围棋有着更复杂的状态和动作空间。
DeepMind已经在星际2上研究了一段时间,前不久刚刚发布了新的进展,但目前为止,相关研究还没有取得重大突破。大家普遍认为,距离人工智能在星际2上吊打人类顶级玩家,至少还有一两年的时间。
这就是OpenAI这个成果如此令人震惊的原因。这是怎么回事?最有有什么人工智能方面的突破是我没有注意到的么?于是我开始研究这个DotA 2人工智能到底干了什么,它是如何训练的,以及在什么样的游戏环境中运行。
我的结论是:这是一个令人印象深刻的成就。但不是一次AI上的突破。
通过这篇文章,我想提供一个关于此事的清醒解释。实际上,过度炒作人工智能的进步才是真正危险的事情。例如,下面这位在推特上的发言,才是真正的误导。
这是伊隆·马斯克的推特,这位硅谷钢铁侠不单创办了特斯拉,而且创办了OpenAI。上面这篇推特中,马斯克大意是说:OpenAI搞出了史上首个击败电子竞技顶级玩家的人工智能。这比搞国际象棋和围棋什么的复杂多了。
在第二条推特中,马斯克再次发表曾被AI届猛轰的观点:没人喜欢被管制,但对公众构成危险的一切(汽车、飞机、食品、药物等)都应该受到管制。AI也是一样。
当然,马斯克还发了一条,就不翻译了,贴图如下
首先要声明的是,我今天要谈及的炒作或者误导,并不是OpenAI研究人员的错误。OpenAI一直在研究方面都有诸多贡献。目前,OpenAI还没有公布他们解决方案的细节,所以外界很容易就会得出错误的结论。
现在开始切入正题。我们先来看看DotA 2的人工智能程序,到底解决了一个多困难的问题?尤其是与AlphaGo相比。
1v1不能与5v5相提并论
在正常的DotA 2游戏中,两个对抗的队伍各由五名玩家组成。游戏过程中需要高级策略、团队沟通和协调,一局比赛通常要45分钟。
而这次人工智能击败人类的比赛,采用了1v1的模式,这种模式有太多限制。例如双方基本上只能沿着单线前进,并尝试击杀对方,游戏过程几分钟就结束了。
在1v1模式中,击败对手主要靠机械技能和短期策略,并不涉及长期规划和协调,而后者才是对当前AI技术来说最具挑战性的部分。
事实上,在这次的人机DotA 2对抗中,可以采用的有效动作数量,少于围棋人机大战;有效的状态空间(目前局面情况),如果以智能的方式表示,应该比围棋要小。
AI可以获取更多信息
OpenAI的人工智能程序,极有可能是构建在DotA 2原有的机器人接口之上,可以获取更多人类玩家看不到的信息。即使OpenAI的研究人员限制了这些信息的获取,人工智能仍然能够得到比人类更精准的信息。
例如技能的施放,人类玩家必须紧盯屏幕,并且估算与对手之间的距离。而AI知道确切的距离,并且能立即决定是否施放技能。获得精准的数字信息是一个很大的优势。其实对战过程中你就能看到,AI有几次攻击都是在最大距离上展开。
反应时间
AI可以立即作出反应,人类不行。再加上刚才说的信息优势,AI的优势进一步扩大了。比方,一旦对手逃离攻击范围,AI可以立刻取消攻击命令。
使用单一英雄
DotA 2中有上百种不同的英雄角色,各具不同的能力和优势。而AI掌握的只是其中一个英雄:Shadow Fiend(影魔)。影魔通常会立刻展开攻击,而不是在一段时间内学习掌握更复杂的攻击技能,这更加有利于发挥AI在信息和反应方面的优势。
所以,鉴于1v1主要比拼机械技能,AI击败人类玩家并不奇怪。鉴于游戏环境被严格限制,造成一些列战术和策略也被限制,而且对战中几乎没有必要进行长期规划或协调。
再次重申我的结论:这次AI击败DotA玩家,比在围棋中击败人类冠军要容易得多。人类没有在AI领域突然取得突破。
这次在DotA对抗中之所以AI获胜,是因为研究人员聪明的设置了问题,使得AI可以绕过目前人工智能的技术限制。
据说这个OpenAI训练这个AI打DotA花了2周。与之相比,AlphaGo在Google的GPU集群上进行了数月的分布式大规模训练。两个程序之间的计算要求有着数量级的区别。
最后夸夸这个会玩DotA的AI,到底有何精彩之处?
完全通过自学训练
AI不需要任何训练数据,也不会从人类的比赛中学习。整个学习过程随机开始,并且通过和自己对抗进行学习。虽然这不是什么新技术,但令人惊讶的是,AI学会了人类玩家已经在使用的技术。这很酷。
AI可能还有其他技术,甚至人类都不知道。这与我们在AlphaGo中看到的类似,围棋选手已经开始学习AI的下棋方式。
AI+电竞的重要一步
在具有挑战性的环境中(例如DotA 2和星际2)来测试AI技术是非常重要的。AI可以为游戏提供更多的价值,游戏也会助推AI更快发展。
不完美信息
在DotA对决中,人类玩家智能看到地图的一小部分,视线受到妨碍。AI可能也一样,虽然还不清楚OpenAI如何处理这个问题的细节。
这意味着与围棋、国际象棋、Atari游戏机等环境不同,AI在DotA中处于一个部分可观察的环境,而无法获知关于游戏当前状态的完整信息。这类问题通常难以解决,话虽如此,但目前还不清楚1v1的DotA 2比赛中,视野的重要性到底几何。
不管怎样,非常期待看到OpenAI关于这次比赛的技术报告。
相关推荐
DVBCN消息2010年7月7日电--Telairity卓越的H.264编码技术是为全球近十亿人观看2010年世界杯足球赛提供支持的“秘密要素”。整个亚洲、南太平洋以及世界杯主办国南非的观众都是依靠Telairity的H.264/AVC编码器来收看高清(HD)和标清(SD)比赛转播的。有了Telairity的H.264现代技术,世界各地的网络运营商和广播、卫星及有线电视公司可以更换掉旧的MPEG-2压缩系统,为客户提供更出色的视频质量并显著降低对带宽的依赖,从而大幅减少传输成本。泰国国营电信公司CATTelecomPublicCompanyLimited安装了Telairity高清和标清编码器
意法半导体(STMicroelectronics,简称ST)宣布,其先进的高清电视系统级芯片(SoC)平台取得了巨大进步,此项成果将意法半导体推向能够运行基于Adobe®AIR®的游戏和其它应用软件的下一代互联网电视技术的最前沿。意法半导体已成功移植AdobeAIR®2.5forTV软件至第三代先进互动高清机顶盒系统芯片平台,并通过Adobe产品认证。AdobeAIR软件是AdobeFlash平台的一个重要组件,原始设备制造商(OEM)、原始设计制造商(ODM)、服务开发人员以及应用开发人员能够在这个平台开发丰富的网络应用软件和游戏,专门为机顶盒和数字电视等嵌入式设备和
TriplePlayIntegration销售副总裁MikeNottage什么是三重播放集成?TPI公司是一家致力于提供数字家庭视频平台解决方案的专业软件服务公司。TPI公司还是官方Adobe的“ScalingPartner”,为消费电子平台提供FlashPlayer10、AIR和舞台美术技术提供优化的端口。我们有25名具有专业的项目管理和质量保障经验的高级工程师团队,平均具有24年的工作经验.你们能够提供什么样的
DVBCN数字电视中文网讯(敖瑞),2012年6月15日(周五),由ARM主办的“跨界、变革、多赢——ARM移动智能终端研讨会暨应用开发者大会”在上海举行。本次约有20名厂商代表上台演讲;参会并参与展示会的厂商超过30家,均为ARM在各个领域的合作伙伴。ARM亚太市场开发经理AlanTsai做出了“移动终端GPU之趋势与迷思”的精彩演讲。Alan表示:在用户体验上来说,分辨率已经可以高达人眼都无法辨析的地步了。公允的说,业界对GPU的评判标准存在太多的分歧:从三角形的角度来看,涉及到生成率、裁切率等指标,不同类型的GPU产品根本没法比;从填充率的角度上